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Abstract

This paper identifies the real estate market responses to rainfall and fire risk in Hawai‘i by
leveraging variations in precipitation patterns and fire risk exposure. Using transaction-level
housing data between 2000 and 2019, we document three key findings. First, rainfall shocks de-
press property values, highlighting the disruptive impact of extreme precipitation. Second, wild-
fire risk also reduces property values, underscoring the market’s sensitivity to fire-related hazards.
Third, the negative impact of rainfall shocks is moderated in areas designated as fire zones, sug-
gesting that buyers value the fire-mitigating benefits of increased rainfall. Our results are robust
to various specifications of rainfall measures and definitions of both fire risk and fire incidence.
Our findings contribute to the understanding of how compound climate risks are capitalized in

real estate markets.
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1 Introduction

Climate change is fundamentally altering global weather patterns, with profound implications for various sectors of the
economy. Recent assessments by the Intergovernmental Panel on Climate Change (IPCC) indicate that each of the last three
decades has been progressively warmer than any preceding decade since 1850, contributing to more frequent and intense
extreme weather events (IPCC, 2021). In the United States, the Environmental Protection Agency reports that regions
experiencing extreme single-day precipitation events have increased by approximately half a percentage point per decade
between 1910 and 2020 (U.S. Environmental Protection Agency, 2021). These climatic shifts are increasingly influencing
real estate decisions, as potential homebuyers express growing hesitation about purchasing properties in areas prone to
climate-related risks (Redfin, 2022)

This study investigates the impact of rainfall! shocks on Hawai‘i’s real estate market, incorporating the effects of
heterogeneous fire risk. Hawai‘i presents a unique setting for this analysis due to its diverse microclimates resulting from
the islands’ steep topography and the complex interplay between terrain, trade winds, and land effects (Sen Roy and
Balling, 2004; Giambelluca et al., 2013). The islands” mountains obstruct the prevailing northeast trade winds, leading to

abundant precipitation on windward slopes and creating dry rain shadows in leeward areas (Figure 1).
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Figure 1: Average Daily Rainfall 1990-2019

Note: Rainfall in Hawai’i is concentrated on windward slopes due to the obstruction of northeast trade winds by steep
topography, creating dry leeward rain shadows.

Rainfall patterns in Hawai‘i have shifted in recent decades, with historically dry regions becoming drier and wet

IFor this study rainfall and precipitation are analogous because inhabited areas in Hawai‘i only experience liquid precip-
itation.
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Figure 2: Percentage Change in Average Daily Rainfall: 2010-2019 vs. 1990-1999

Note: The figure shows spatial variation in rainfall trends across fire-prone areas in Hawai‘i . While some excessive-risk
zones have become drier, others have grown wetter, reflecting the complex interplay between precipitation and fire risk.
Black polygons indicate at fire-risk communities. (Source: Hawai‘i Climate Data Portal).

regions becoming wetter (Elison Timm et al., 2013; Chen and Chu, 2014). The state has also experienced more extreme
precipitation events at both ends of the distribution. For example, in 2018, Kaua‘i’s north shore received 1,262 mm of rain
in 24 hours (nearly half its annual rainfall) causing catastrophic flooding that isolated communities for months. Changes
in precipitation patterns have led to increased water shortages in dry areas while amplifying risks of runoff, erosion, and
flooding in wet regions (State of Hawaii Climate Change Portal, 2024).

Equally consequential is the state’s growing vulnerability to wildfire. The August 2023 Lahaina wildfire underscores
Hawai‘i’s susceptibility to destructive fires, revealing how precipitation may create countervailing effects across fire-prone
zones. As Figure 2 illustrates, some areas of excessive fire risk have become wetter while others have become drier, po-
tentially leading to mixed outcomes. Drought conditions increase the availability of combustible fuel, while excessive
precipitation promotes vegetation growth that can later serve as fire fuel (Westerling et al., 2006; Lima et al., 2018; Volkova
etal.,, 2019; Herndndez Ayala et al., 2021; Puxley et al., 2024). Conversely, wet conditions can mitigate fire risk by reducing
ignition probability by maintaining soil moisture (Abatzoglou and Williams, 2016), and limiting the accumulation of dry
fine fuels (Van Blerk et al., 2021). This effect has been documented in tropical ecosystems (Spracklen et al., 2012) as well
as in urban and forested areas (Sakai et al., 2004). Our study offers the first empirical evidence of how these nuanced
precipitation-fire risk interactions are reflected in property values. The results suggest that buyers may be interpreting
rainfall patterns as informative signals about local fire danger and incorporating these expectations into property valua-

tions.



We employ two complementary estimation approaches to identify the response of consumers to rainfall variability
and fire risk. First, we implement a hedonic pricing model that controls for a wide array of observable differences across
properties and neighborhoods using detailed information on housing characteristics. Second, to address omitted variable
bias, we estimate a repeat sales model that introduces property fixed effects. Our findings indicate that markets value the
fire mitigation benefits of rainfall. Increases in rainfall consistently reduce property values; however, this negative effect
is substantially moderated in areas with excessive fire risk. Specifically, a one standard deviation increase in cumulative
rainfall index reduces prices by 1.9-2.1 percent in low-fire-risk areas but only 0.8 percent in excessive-risk areas. This
pattern holds across multiple rainfall measures: each additional day of extreme rainfall (above the 99th percentile) reduces
values by 0.7-0.8 percent in low-risk areas, but this discount is completely offset in excessive-risk areas. Extremely dry
spells (below the 1st percentile) consistently reduce property values by 0.5 percent per day, regardless of fire risk exposure,
while moderate dry spells have no effect. We confirm the robustness of our findings to an alternative, dynamic measure of
wildfire risk that captures the proximity, size, frequency, and recency of nearby fires to reflect only salient, price-relevant
risks.

The remainder of the paper is organized as follows. Section 2 reviews the relevant literature. Section 3 describes the
data sources, our fire risk measures, and their construction. Section 5 motivates our empirical strategy by documenting the
increasing importance of environmental risks in Hawai'i . Section 4 details the construction of our precipitation measures.
Section 6 outlines the empirical approach. Section 7 presents the main findings, and Section 8 discusses their implications

and proposes directions for future research.

2 Literature Review

A growing body of research documents how climate risks are increasingly capitalized into real estate values. Recent work
has established that markets discount properties exposed to sea level rise (SLR) nationally, with the magnitude varying
based on local adaptation capacity and risk awareness (Fu et al., 2016; Bernstein et al., 2019; Keys and Mulder, 2020;
Tedesco et al., 2020; Tarui et al., 2023; Tyndall, 2023). Similar pricing patterns have been observed for other climate hazards.
Wildfires have been linked to increased mortgage delinquency (Issler et al., 2020) and reduced residential property values
(Dong, 2024), hurricanes, and extreme heat to declines in commercial real estate returns (Addoum et al., 2024; Cvijanovic
and Van de Minne, 2024). This extensive body of work highlights the responsiveness of real estate markets to climate
risks. However, since environmental amenities exhibit heterogeneous effects across local conditions (Gibbons et al., 2014;
Albouy et al., 2016; Bakkensen and Barrage, 2021), the channels and magnitudes of these market responses remain subjects
of ongoing debate.

Rainfall poses a distinctive case because it functions both as an amenity and a disamenity. Early hedonic studies found
a negative impact of rainfall on property values (Blomquist et al., 1988; Clark and Cosgrove, 1990). Torrential rainfall and
flooding risk are associated with lower housing prices (Bin and Landry, 2013) and tighter lending standards (Avril et al.,
2023; Blickle et al., 2024). In general, households prefer less precipitation and more seasonal variation (Englin, 1996).

Recent work reveals important nuances in the relationship between precipitation property value. Goodwin et al.
(2021) shows that increased rainfall in Mexico City reduces particulate matter pollution, indirectly boosting home prices
through improved air quality. Mueller et al. (2018) document how post-wildfire flooding risks in Arizona create compound

effects on property values, highlighting the interplay between different climate hazards. Lamas Rodriguez et al. (2023)



finds a negative correlation between ecological deterioration caused by excessive rainfall and house prices in Mar Menor,
Spain. Choi and Lee (2016) look at the physical amount of rainfall as one cause of floods and find that both the average
annual rainfall and rain intensity (amount of rainfall per rainy day) negatively affect property prices. Overall, this strand
of literature suggests that the impact of rainfall on property values is negative but may vary based on its interaction with
other environmental factors.

Ecological research provides important context for these interactions. Drought conditions increase fuel dryness and
ignition potential, whereas periods of heavy precipitation promotes vegetation growth that subsequently serves as com-
bustible fuel (Westerling et al., 2006; Holden et al., 2018; Lima et al., 2018; Volkova et al., 2019; Herndndez Ayala et al., 2021;
Puxley et al., 2024). Conversely, ignition probability and fuel flammability may also be strongly moderated by recent pre-
cipitation and moisture conditions (Abatzoglou and Williams, 2016; Van Blerk et al., 2021). The dual role of precipitation
in both amplifying and mitigating fire risk highlights the need to understand how the Hawaiian housing market interprets
these opposing ecological signals.

Beyond physical exposure, housing markets reflect how agents form and update beliefs about environmental risks.
Empirical work shows that property prices respond more to salient or recent events than to objective hazard probabilities.
Following natural disasters, capitalization effects spike but gradually dissipate as memory fades (Hallstrom and Smith,
2005; Bin and Landry, 2013; Gallagher, 2014; McCoy and Walsh, 2018). These patterns align with experience-based learning
frameworks, wherein buyers update perceived risk after observing new signals (Baldauf et al., 2020; Boustan et al., 2020;
Bakkensen and Barrage, 2021). In this view, rainfall anomalies may act as informational signals that alter beliefs about
future fire hazard realization, i.e., increased rain in excessive fire-risk areas may signal reduced ignition risk to potential
buyers.

We test this expectation-based mechanism in the Hawaiian housing market. Hawai‘i provides an ideal setting for
this analysis due to its diverse microclimates and varying exposure to fire risk. Following Englin’s (1996) caution against
national-level precipitation studies, we focus on a region where spatially granular rainfall measurement is available and
fire risk varies substantially in small geographic areas. We construct z-score-based indices, which have been widely used
in climate impact studies due to their simplicity and reliability in assessing climate vulnerability (Shahabfar et al., 2012;
Nam and Kim, 2013; Nourani et al., 2021; Pauline et al., 2021; Zaveri et al., 2023). We also consider a suite of alternative
measures, such as fractional deviation of monthly rainfall from its average historical level (Duflo and Pande, 2007; Sarsons,
2015), rainfall shocks (Jayachandran, 2006; Sarsons, 2015; Shah and Steinberg, 2017; Kaur, 2019), and counts of extreme
rainy and dry days, identified by a percentile threshold (Suppiah and Hennessy, 1998; Endo et al., 2005; Méndez-Lazaro
et al., 2014).

We employ two measures of fire exposure to distinguish between long-term structural vulnerability and short-term
environmental salience. The static Communities at Risk (CAR) classification, established in 2006-2007, captures baseline
hazard potential determined by persistent landscape characteristics such as vegetation density, topography, and historical
fire incidence. These features define a property’s inherent susceptibility to wildfire but remain constant over time. Our
second measure, following Shi et al. (2022), is a dynamic fire exposure index that incorporates the size, proximity, and
recency of actual wildfire events within a defined spatial and temporal window. This index accounts for evidence that
hazard-related price effects are strongest following salient events (Hallstrom and Smith, 2005; Bin and Landry, 2013). Note

that if rainfall merely corrected for a mismeasured or outdated fire risk classification, its interaction with the fire measure



would disappear once the dynamic index reflecting contemporary weather conditions is used. Instead, consistent results
across both measures would indicate that rainfall conveys distinct, time-varying information about ignition probability. In
this framework, rainfall functions as an environmental signal that markets use to update expectations about immediate fire
danger.

Methodologically, our work contributes to a debate about the appropriate empirical strategies for identifying climate-
related price effects. The traditional hedonic approach (Rosen, 1974) has been widely used to estimate implicit prices of
environmental amenities but faces challenges from omitted variables. To address this, first, we include a host of controls
in our regression, including basic property characteristics (square footage, rooms, property age, home type, slope etc.),
coastal proximity controls as properties close to the coast command a premium (Jin et al., 2015; Tarui et al., 2023), and
elevation controls as high elevation is viewed as an amenity due to superior views (Gordon et al., 2013), or as insurance
against risks such as SLR (Tyndall, 2023). Second, we utilize a repeat sales method to address omitted variable concerns
(Palmquist, 2005). Our implementation of both approaches demonstrates how they can provide complementary evidence
on environment-property value relationships.

This paper advances understanding of how compound climate risks shape real estate values. We provide new evi-
dence on the interaction between precipitation patterns and fire risk in determining property values. Our methodological
framework, combining hedonic and repeat-sales approaches, can be extended to other contexts where multiple environ-

mental processes jointly affect asset values.

3 Data

3.1 Parcel Data

This study employs real estate transaction data and key property characteristics from Black Knight, a financial services
firm. Our analysis is underpinned by property assessment and deed data. The deed data provides critical transactional
information, including the exact date of the transaction and the classification of the property as either residential or com-
mercial. The assessment data offers insights into property features such as the number of rooms, living area, age of the
property, and type (e.g., single-family dwelling vs. multi-family dwelling). These two datasets are merged using the Black
Knight Distinct Property ID (BKDPID), a unique identifier for each property. Our study focuses exclusively on residen-
tial properties. We used transactions between 2000 and 2019 and excluded transactions priced below $50,000 or above
$50,000,000 to retain arm’s length transactions and remove outlier influence.

In the subsequent phase, we integrated environmental data, starting with publicly accessible daily rainfall rasters from
the Hawai‘i Climate Data Portal. This product is gridded at a high resolution of 250 meters, allowing us to use it effectively
with detailed micro-transaction data. In addition, we procured GIS shapefiles from the Hawai‘i Statewide GIS Program’s
Geospatial Data Portal, which offered detailed spatial geometries of tax parcels and delineations of coastlines across the
principal Hawaiian islands. These rainfall rasters were overlaid onto our parcel geometries to generate a spatial map. The
projection chosen for this analytical exercise was the WGS-1984, deemed most suitable for our geographic study area. For
each day from January 1, 1990, through December 31, 2019, we assigned to each parcel the daily precipitation value as
its value at the parcel’s geographical center. This procedure was then replicated with additional shapefiles, augmenting

the dataset with other critical spatial attributes such as elevation and coastal distance. We mapped elevation rasters onto
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Figure 3: Average Monthly Rainfall (mm) from 1990 to 2019

Note: This figure shows average monthly rainfall from 19902019, comparing the state-level average (blue) with the aver-
age for transactions in our sample (green). Monthly values represent the mean rainfall per property, averaged across 30
years.

parcels to calculate the average gradient of the parcel (slope). Utilizing Assessor Parcel Number (APN) as the property

identifier, we merged this augmented dataset with Black Knight data.
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Figure 4: Total Annual Rainfall (mm)

Note: This figure plots the total annual rainfall for properties in our transaction sample. The solid blue line connects yearly
totals, while the dashed red line shows a smoothed LOESS trend to highlight long-run patterns in precipitation.



Figure 3 illustrates average monthly rainfall patterns for the state and for properties in our sample from 1990-2019.
While the sample properties exhibit higher average rainfall overall, the pattern closely aligns with statewide seasonal
fluctuations. Rainfall in Hawai‘i is characterized by distinct wet (November-March) and dry (April-October) seasons.
During the wet season, trade winds bring precipitation primarily to windward areas, supplemented by winter storms that
can produce rainfall across the islands. In the dry season, precipitation declines significantly, especially in leeward regions,
although windward areas continue to receive some rainfall driven by trade winds. The long-term trend in total annual

rainfall remained relatively stable from 1990 to 2019 (Figure 4, dashed red line).

3.2 Static Fire Risk

We obtain fire risk data from the Hawai‘i Statewide GIS Program’s Communities at Risk (CAR) from the Wildland Fires
layer. Initially compiled in 2006-2007 by the Department of Land and Natural Resources, this dataset provides risk rat-
ings of High, Medium, or Low for major populated areas across the Hawaiian islands. The fire risk assessment follows
guidelines developed by the National Association of State Foresters in June 2003, created in response to the National Fire
Plan and the Healthy Forests Restoration Act (HFRA). These guidelines outline a process for identifying and prioritizing
communities at risk from wildland fires, considering factors such as fire occurrence, hazard conditions, values protected,
and protection capabilities. In our analysis, we designate a community at risk of “excessive fire" if rated as either high or
medium risk.2 Despite the data being collected in 2006-2007, the Hawai‘i Statewide GIS Program confirmed in October

2022 that these boundaries and risk ratings remain valid and unchanged over time.

3.3 Dynamic Fire Risk

Although, the static classification reflects underlying landscape vulnerability, it may not fully capture evolving on-the-
ground conditions. Figure A5 shows that actual wildfire perimeters often diverge from the mapped risk boundaries. To
complement the static designation, we therefore construct a dynamic transaction-specific fire index that accounts for recent
wildfire activity surrounding each property. This index integrates the size, proximity, and frequency of wildfires occurring
within three years and 10km of each sale, similar to Shi et al. (2022):

sizef,

FireIndex;; = Z
k

)

exp(distancey;)’

where sizey, is the area of fire k (acres) and distancey; is its centroid distance (km) from property i. The exponential term
introduces spatial decay, and « allows for diminishing marginal effects of fire size. Wildfire perimeters are compiled from
the Pacific Fire Exchange database, which merges ground-mapped, satellite, and agency sources including the Hawai’i
Wildfire Management Organization, US Geological Survey, and the University of Hawai'i Department of Natural Resources
and Environmental Management.

The time-varying measure of fire exposure, constructed from actual wildfire occurrences, serves as a validation check
for our baseline results. It mitigates potential measurement concerns associated with the static risk map and captures
capitalization effects driven by the salience of recent fires (Bin and Landry, 2013; McCoy and Walsh, 2018). Details of the

index construction and the estimation of a are provided in Appendix A. For clarity and interpretability, we rely on the

2While we group high and medium fire risk areas to reflect broader exposure, the results are robust to separating these
categories. Both show consistent patterns compared to low-risk areas, and the main findings remain unchanged.



Table 1: Summary Statistics (2000-2019)

Panel A: Full Sample

Mean Median Sd Min. Max.
Sales Price 495,513 356,773 698,757 50,000 46,117,500
Fire Risk 0.59 1 0.49 0 1
House Age 26 26 18 0 166
Square Footage (1000) 14 1.1 0.82 0.1 21
# Bedrooms 2.7 3 1.2 1 18
Slope 3.6 2.3 4 0 47
Elevation (m) 98 25 172 0 1584
Coastal Distance (m) 2,659 1,456 3,347 0.47 25,108
Single Family 0.41 0 0.49 0 1
Six Month Daily Avg (mm) 2.6 1.9 24 0.02 35

Panel B: Repeat Sales Sample

Sales Price 474,870 345,000 644,470 50000 46,117,500
Fire Risk 0.62 1.00 0.49 0 1.00
House Age 25 25 17 0 166
Square Footage (1000s) 1.3 1.1 0.80 0.1 17
# Bedrooms 2.6 3 1.2 1 15
Slope 3.6 2.3 4 0 42
Elevation (m) 97 24 171 0 1469
Coastal Distance (m) 2,632 1,410 3,334 0.47 24,614
Single Family 0.4 0 0.49 0 1
Six Month Daily Avg (mm) 2.57 1.85 2.33 0.02 35.14

Note: Descriptive statistics for all transactions. Fire Risk is a binary indicator. Zero house age indicates the
property was sold the same year it was built. All prices are nominal. N = 268,406 for the full sample and N =
180,044 for the repeat sales sample.

static designation as our primary measure of wildfire risk and report the dynamic index results as a robustness exercise in

the appendix.

3.4 Summary Statistics

Our final dataset consists of 268,406 observations covering 158,405 unique properties in the four counties of Maui, Kaua‘i
, Honolulu, and Hawai‘i . Restricting this to properties that sold more than once, 33% of observations drop out. Table
1 provides descriptive statistics for the full sample and repeat sales subsample, highlighting key property characteristics
and differences across the datasets. The nominal median sales price for the full sample was $356,773, while the repeat
sales subsample had a slightly lower median of $345,000. Properties in the full sample were, on average, 26 years old,
with a mean size of 1,400 square feet. The average six-month daily rainfall was 2.6 mm across both samples. In the full
sample, 59 percent of transactions occurred in communities classified as at excessive fire risk under the static designation.
Under the dynamic measure, 43 percent of transactions exhibited some wildfire exposure within the prior three years of
transaction date. The mean fire index of 0.41 and median of 0 indicate that most properties faced minimal exposure, while
the maximum value of 18 points to a small number of transactions located near large or repeated fires (Table A4).

Table 2 further disaggregates the full sample by fire risk, illustrating notable differences. Properties in excessive-fire-



Table 2: Comprehensive Sample Summary Statistics split by Fire Risk (2000-2019)

Low Fire Risk

Mean Median Std. dew.

Sales Price 505,352
House Age 31
Square Footage (1000) 1.3
# Bedrooms 25
Slope 3.4
Elevation (m) 101
Coastal Distance (m) 2,652
Single Family 0.38
Six Month Daily Avg (mm) 3.2

365,000
31

1.1

2

1.9

18
1,486

0

22

724,534
18

0.87

1.3

42

201
3,629
0.49

2.8

Excessive Fire Risk
Min. Max. Mean Median Std. dew.
50,000 46,117,500 488,610 350,000 680,005
0 162 22 21 16
0 21 14 1.2 0.79
1 18 2.7 3 1.1
0 42 3.8 2.6 3.9
0 1,584 95 30 148
0.49 25,108 2,663 1,439 3,134
0 1 0.42 0 0.49
0.031 35 2.2 1.7 1.9

Min. Max.
50,000 41,775,000
0 166

0 14

1 16

0 47

0 1,401

047 22,887

0 1
0.016 16

Note: Descriptive statistics for all transactions categorized by excessive fire risk (N = 110,676) and low fire
risk (N =157,730). All prices are nominal.

risk areas were generally newer (mean age of 22 years) and larger (1,400 square feet on average) compared to low-fire-risk

areas (mean age of 31 years, 1,300 square feet). Average six-month daily rainfall was higher in low fire-risk areas (3.2

mm) than in high fire-risk areas (2.2 mm). These differences underscore the geographic and environmental variation in the

dataset, enabling an in-depth analysis of rainfall impacts on property values across fire risk profiles.

Figure 5 shows the distribution of sales prices which has a rightward skew. In our regression specifications, we use

logarithm-transformed nominal sales price as our dependent variable, which approximately follows a normal distribution.

Our repeat sales sample is also representative of the complete set of home sales (Figure A1).
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Figure 5: Nominal Sales Price Distributions 2000-2019

4 Precipitation Measures

To quantify the relationship between precipitation patterns and property prices, we utilize various indices: Cumulative
Rain Index (CRI), Fractional Deviation (FD), Shock Index (SI), Rain Event Count (REC), and Dry Event Count (DEC).
Each index is computed for individual property transactions. For notational simplicity, we suppress the time subscript

throughout our discussion of these indices, although each measure is calculated specifically for a property’s transaction

date.



4.1 Cumulative Rain Index (CRI)

Z-score-based indices, or standardized precipitation anomalies, are widely used in the literature to quantify precipitation
variability (Zaveri et al., 2023). Typically, these involve subtracting location-specific rainfall from its long-term mean and
dividing by the standard deviation across the entire sample. Rainfall variability measured in this manner reflects random
draws from the climate distribution (Zaveri et al., 2023). The resulting z-score represents the standard deviations from
the long-run mean for a specific location and time. Our Cumulative Rain Index (CRI) extends this concept with some
modifications. We define lookback periods (90, 180, or 365 days) before each property’s transaction date. We compare this
lookback period with a mean for the same calendar days during the prior 10 years, controlling for both location-specific
and seasonal factors.

Calculating the long-term mean based on 10 years of daily observational data preceding our lookback period offers
several advantages. First, it captures recent weather trends, as the baseline adjusts with each property’s transaction date,
allowing the index to adapt to evolving precipitation patterns potentially influenced by climate change. Second, according
to Gourley (2021), recent weather conditions have a more statistically significant impact on house prices than long-term
averages. Third, the approach flexibly adjusts for the volatility of weather, i.e. whether a property is in a region with a
stable climate or one experiencing rapid changes, the index will reflect the relevant recent conditions relative to the norm.

Our index is calculated as follows:

¢ For each property i, we consider N days (N = 90, 180, 365) of daily rainfall data immediately preceding the transac-

tion date. This is our lookback period.

¢ For property i with transaction date t, we identify the same N calendar days in each year during the ten-year base
period preceding the lookback period. For example, assuming N = 180 and the property sold on January 1, 2010,
the lookback period would be July 5, 2009, to January 1, 2010 (180 days). The base period would cover July 5 to
January 1 for each year from 1999 to 2008. This approach ensures consistency in seasonality between the lookback

and base periods.

¢ The CRI for property i is the difference between the cumulative rainfall in the lookback period Rjyokpack; and the
mean of the cumulative rainfalls in each year of the base period jipag,, scaled by the standard deviation of the
cumulative rainfall per year in the base period o}, o Note that the base period means and standard deviations are

computed from ten cumulative rainfall observations (one for each year in the base period).

_ Rlookback,- — Hbase; (2)

CRY
Obase;

For robustness, we also analyze the index constructed using a fixed 1990-1999 base period to examine the impact of

long-term climate change rather than short-term weather variations.

4.2 Fractional Deviation (FD)

We use a commonly used measure of rainfall shocks constructed to account for seasonality, i.e., the fractional deviation of
monthly rainfall from its average level (Duflo and Pande, 2007; Sarsons, 2015). The average is calculated for each month

using data from 1990 to 1999. This fixed base period allows FD to account for long-term shifts in rainfall patterns, making it

11



a potential proxy for climate change over the years. We define a shock for each of the 12 months preceding the transaction

date and sum them to obtain the overall rainfall shock for each property. Specifically:

e For property i in month m, calculate the historical average across BaseYears = {1990,1991, ...,1999}. This gives us

twelve average values for January through December.

Ri,m = n Z Ri,m,y (3)

yEBaseYears

¢ For each of the twelve months m preceding the transaction, calculate the fractional deviation from the historical
average of that month.
Rim—R;
(S' — 1,m_ 1,m 4
= @
¢ Sum the deviations for each of the 12 months preceding the transaction date and divide by twelve to compute the

average fractional deviation for property i:

FD; = 5 Y Sim )

4.3 Shock Index (SI)

We construct a seasonally adjusted measure of rainfall shocks based on the approach used in Jayachandran (2006), Sarsons

(2015), and Kaur (2019).

¢ For each property i and each month m (January through December), we compute the 80th and 20th percentile total
rainfall values, denoted as P80; ,, and P20; ,,, respectively. These percentiles are computed using total rainfall data

across the BaseYears = {1990,1991, ...,1999}, providing ten data points for each month.

¢ For each of the twelve months preceding the transaction month, we look at the total monthly rainfall R; ,, and define

a discrete shock S; ,,, to represent a positive, negative, or no shock.

+1, if R, > P80;
Sim = =1, if Ry, < P20;, (6)

0, if P20;,; < Rip < P80;

¢ Calculate the average of the monthly shocks over the twelve months preceding the transaction date to obtain the

rainfall shock measure for property i:

1 12
ShOCk,' = E Z Si,m (7)
m=1

4.4 Rain Event Count (REC) and Dry Event Count (DEC)

To capture the frequency of unusual rainfall events and their potential impact on property prices, we employ metrics called
Rain Event Count (REC) and Dry Event Count (DEC). These measures are designed to quantify how often precipitation de-
viates significantly from historical norms, providing a measure of extreme weather occurrences. REC focuses on unusually
wet periods, calculated at the 90th, 95th, and 99th percentiles of historical rainfall. Conversely, DEC captures unusually dry

periods, focusing on the 1st, 5th, and 10th percentiles. By examining both extremes, we aim to provide a comprehensive
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picture of precipitation anomalies that could influence property valuations. This approach allows us to capture not just the
intensity but also the frequency of extreme weather events, which may have non-linear effects on property markets. The

indices are calculated as follows:

¢ For each property transaction, we consider 365 days (12 months) of daily rainfall data immediately preceding the

transaction date. This is our lookback period.
¢ For the same property, we use historical data over the past 10 years to calculate the respective percentile thresholds.
¢ For REC we count the number of days in the lookback period that exceed these thresholds.

¢ For DEC we count the number of days in the lookback period that are below these thresholds.

4.5 Precipitation Summary Statistics

Panel A of Table 3 presents summary statistics for our rainfall measures, revealing substantial variations in precipitation
patterns across our comprehensive sample. These measures are designed to capture different aspects of rainfall shocks,
from cumulative deviations to extreme events. The Cumulative Rain Index (CRIz¢5), which measures the standardized
deviation of rainfall over a 365-day lookback period, shows a mean of 0.13 and a median of 0.07. This slight positive skew,
coupled with a standard deviation of 1.30 and a range from -5.62 to 6.66, indicates that while on average, properties expe-
rienced slightly wetter conditions than historical norms, there was considerable variability, with some areas experiencing
significantly drier and others wetter conditions. The Fractional Deviation (FD) measure captures the average cumulative
rainfall anomalies over the 12 months preceding each property transaction. With a mean of 0.1 and a median of 0.01, it
suggests that, on average, properties experienced slightly higher cumulative rainfall in the year leading up to the transac-
tion compared to their historical norms. Specifically, the mean indicates that over the year leading up to the transaction,
properties experienced a consistent pattern of increased rainfall, averaging 10% more than what is typically expected based
on historical data. The median of 0.01 implies that half of the observations had an average fractional deviation within 1%
of their historical average during the prior 12 months. The standard deviation of 0.43 and the wide range from -0.85 to 3.24
highlight significant variability in rainfall patterns across different properties and periods. In extreme cases, some areas
experienced only 25% of their normal cumulative rainfall (severe drought conditions), while others received more than
three times their typical amount (extreme excess rainfall) in the year preceding a transaction.

The Shock Index (SI), which discretizes monthly rainfall into positive, negative, or no shocks based on historical 80th
and 20th percentiles, provides additional insight into the frequency and direction of rainfall anomalies. With a mean of 0.05
and a median of 0.00, it suggests a slight tendency towards positive rainfall shocks in our sample period. The full range
of -1.00 to 1.00 indicates that some properties experienced consistently dry or consistently wet conditions relative to their
historical norms over the 12 months preceding the transaction.

We measure extreme rainfall frequency using Rain Event Counts (REC) above the 90th, 95th, and 99th percentiles over
a 365-day period. On average, properties have 39.40 days (median 39) above the 90th percentile, 20.64 days (median 20)
above the 95th, and 4.47 days (median 4) above the 99th, closely matching theoretical expectations of 37, 18, and 4 days,
respectively. Maximum values of 119, 64, and 29 days, respectively, reflect substantial variation across transactions. Dry
Event Counts (DEC) are lower: 33.5 days (median 36) below the 10th percentile and 0.40 days (median 0) below the 1st
percentile. Notably, properties experience more than eleven times as many days above the 99th percentile than below the

1st, indicating a skew toward wet extremes.
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Table 3: Rainfall Measure Summary Statistics

Panel A: Full Sample

Mean Median Sd Min Max

CRlsg5 0.13 0.07 1.30 -5.62 6.66
FD 0.09 0.01 0.43 -0.85 3.24
SI 0.05 0.01 0.49 -1.00 1.00
REC-. 909, 39.40 39.00 13.09 4.00 119.00
C-95% 20.64 20.00 8.62 0.00 64.00
C=99% 4.47 4.00 3.21 0.00 29.00
C10% 33.48 36.00 20.32 0.00 124.00
Cs59 13.50 14.00 12.57 0.00 83.00
DEC_19, 0.40 0.00 1.69 0.00 23.00

Panel B: Repeat Sales Sample

CRlsg5 0.15 0.09 1.31 -5.41 6.66
FD 0.10 0.01 0.44 -0.85 3.24
SI 0.06 0.01 0.49 -1.00 1.00
REC 99, 39.59 39.00 13.18 4.00 119.00
REC. 950, 20.76 20.00 8.69 0.00 64.00
C<999 4.49 4.00 3.26 0.00 29.00
C10% 32.87 36.00 20.42 0.00 123.00
Cs9 13.21 13.00 12.50 0.00 69.00
DEC 19, 0.38 0.00 1.61 0.00 22.00

Note: Rainfall measure descriptive statistics based on all transactions (N = 268,406) and repeat sales transactions (N =
180,044). The Cumulative Rain Index (CRI) is calculated over a lookback period of 365 days before the transaction date,
reflecting cumulative rainfall deviations. Fractional Deviation (FD) captures rainfall shocks using monthly deviations
from a historical average for each of the 12 months preceding the transaction date. The Shock Index (SI) is based on
discrete monthly rainfall shocks, where rainfall in each of the 12 months deviates beyond the 80th or below the 20th
percentiles of historical values. Rain Event Count (REC) and Dry Event Count (DEC) quantify extreme daily events,
counting the number of days exceeding or falling below-specified rainfall percentiles within the 365-day lookback period.

Panel B demonstrates similar patterns, indicating consistency in rainfall measures across the repeat sales subsample.
Overall, the variability in precipitation patterns, from sustained shifts in average rainfall to fluctuations in extreme wet
and dry events, offers a robust foundation for analyzing the impact of changing rainfall regimes on property values across

Hawai‘i’s diverse micro-climates.

5 Saliency

Do homebuyers in Hawai‘i internalize the state’s micro-climatic variations when making purchase decisions? Evidence
from both rainfall and wildfire patterns suggests that these environmental risks are becoming increasingly difficult to ig-
nore. Figure 6 shows that properties in our sample have experienced a growing number of days with extreme rainfall.3
Five-year moving averages suggest that this shift represents a structural change in precipitation patterns rather than iso-
lated weather events, particularly evident in the mid-2000s when extreme rainfall often exceeded its full-sample mean.
Likewise, wildfire risk has also intensified. Approximately 0.5% of Hawai‘i’s total land area burns annually, a rate compa-
rable to or even exceeding that of any other US state. Figure 7 illustrates the trend in statewide area burned over time.

In Appendix A, we present additional evidence that microclimate distinctions are recognizable concerns in Hawai‘i

3We follow the common practice in climate studies of using 75mm as a cutoff for extreme rainfall. This rule of thumb
threshold has been adopted in regional studies (Begueria and Vicente-Serrano, 2006) and appears in Hawai‘i’s climate
assessments and academic work (Chu et al., 2009; Kunkel et al., 2022).
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Figure 6: Average Extreme Precipitation Days by Property

Note: This figure tracks each unique property in our sample and reports the average number of days with extreme rainfall
(over 75 mm) between 1990-2019. The increase in both frequency and clustering after the mid-2000s suggests a structural
shift in precipitation patterns across the sample period.
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Figure 7: Annual Area Burned Statewide

Note: This figure shows the area (in thousands of acres) burned by wildfires in Hawai‘i from 2000 to 2020, with a fitted
linear trend line and 95% confidence interval. Data is sourced from the Pacific Fire Exchange.

, particularly the “windward” versus “leeward” dichotomy. These terms frequently appear in real estate listings and

search patterns. Public disclosure of localized environmental risk can shift buyer behavior. For example, Donovan et al.
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(2007) found that after the Colorado Springs Fire Department’s risk ratings became publicly accessible, properties in high-
risk areas saw their previous amenity premiums offset by increased risk awareness among buyers. In Hawai‘i , websites
like the Rainfall Atlas of Hawai‘i and the Pacific Fire Exchange have been accessible since 2011, providing spatial data
on precipitation trends and wildfire incidents. Hawai‘i buyers have thus long had access to the data necessary to make
informed location decisions based on environmental risks.

A key empirical challenge concerns the horizon over which buyers process and respond to environmental risks. To
address this, we complement our analysis with a dynamic fire index that incorporates the size, proximity, frequency, and
recency of fires (Appendix A). Our approach thus accounts for the salience-driven capitalization documented in the natural
disaster literature, where risk is reflected in home prices primarily after major events (Bin and Landry, 2013; McCoy and
Walsh, 2018). Similarly, our rainfall measures discussed in Section 4 are designed to align with short time frames over

which environmental conditions are most likely to influence property valuations.

6 Methods

We use a hedonic regression to examine the heterogeneous impact of rainfall on property values between 2000-2019 across
areas with different levels of fire risk.* Our estimating Equation 8 controls for housing characteristics to isolate the effect

of precipitation changes:

log(P;;) = B1Wit + BaFi + B3(Wis - Fi) + Xipyx + Ye + Ci + € 8)

The variable P;; represents the log-price of property i in transaction year t, Wj; is a placeholder for our wetness mea-
sure, F; is a binary variable that is one if fire risk is excessive, the vector Xj; represents the property characteristics including
property type (Single Family vs Multi Family), house age, living area square footage, total rooms, number of bedrooms,
slope of the property, and 20 equal sized control bins for elevation and coastal proximity. Year-month fixed effects Y capture
market-wide fluctuations in home prices over time, and census tract fixed effects C absorb time-invariant neighborhood
characteristics. Consequently, our identification stems from within census tract variation in our wetness measure. The co-
efficient B captures the average effect of changes in precipitation on log property prices in areas with low fire risk (F; = 0),
holding all other factors constant. For excessive fire risk areas (F; = 1), the B, coefficient represents the price premium or
discount associated with high fire risk regardless of precipitation levels, and the B3 coefficient shows how the effect of pre-
cipitation on property prices differs in excessive fire risk areas compared to low fire risk areas. We interpret the rainfall-fire
interaction as capturing how rainfall shocks modify the salience of risk within structurally exposed zones. The total effect
of precipitation on log property prices in excessive fire risk areas is given by 1 + B3.

To account for the possibility of unobserved differences in housing characteristics, we also estimate a repeat sales
model given in Equation 9. The repeat sales approach isolates the average difference in log price experienced by a specific
property due to changes in precipitation levels between sales, while also accounting for how this effect varies with fire risk.

Identification now stems from variations in precipitation through time across repeat sales.

We experimented with alternative functional forms, including Box-Cox transformations and non-linear (e.g., squared)
terms for house age and size, but found minimal differences in estimates. As most omitted variable bias concerns are
addressed using the repeat sales approach, we do not report model fit statistics (e.g., AIC, BIC, R2) for these variants.
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log(Py;) = B1Wit + B2 (Wit - F;) + B3(F; - T;) + Ba(Ci - T;) + Yy + H; + €t ©)]

Property fixed effects H; control for all time-invariant characteristics of the property, including those that are observ-
able (such as location, elevation, or basic structural features) and those that are unobservable, mitigating the concerns for
omitted variable bias. The year-month fixed effects Y; continue to control for market-wide temporal variation and the in-
terpretation of B1 and 8, remains the same: heterogeneous impact of precipitation in high and and low fire risk areas. Note
that we do not control directly for F;, as being in high vs low risk is absorbed by the property fixed effects. We do control
for the possibility that properties may appreciate differently in excessive fire risk areas by including (F; - T;), where T; is
a continuous year variable generated from the transaction date (i.e., a property sold at the end of the sixth month of 2012
would take the value of 2012.5). The coefficient B3 captures the yearly difference in price appreciation between excessive
and low fire risk properties. Similarly, the term (C; - T;) captures the time trend in property appreciation by census tract
which accounts for how preferences for different census tracts may have changed over time.

For both hedonic and repeat sales specifications, we apply a two-way clustering adjustment to standard errors since
€;; may be correlated across space and time. The effect of precipitation on properties in the same neighborhood is likely
similar, which justifies clustering at the census tract level. Temporally, we cluster at the year-month level to account for the

correlation of precipitation patterns within months.

7 Results

Our hedonic model provides insights into how various property characteristics and rainfall patterns influence housing
prices in Hawai‘i , with a particular focus on areas with different levels of fire risk (Table 4). The control coefficients in
our hedonic model align with conventional expectations in the real estate literature. We find that living area is positively
associated with property values, with each additional 1,000 square feet corresponding to a 25% higher price (p<0.01).
This substantial effect underscores the premium placed on spacious homes in Hawai‘i’s market. Similarly, each additional
bedroom is associated with a 3% price gain (p<0.01), reflecting the value of functional living space. Single-family homes
command a significant premium of 20% (p<0.01) over multi-family dwellings. The positive coefficient for average slope
(0.5% per unit increase, p<0.01) suggests that properties on steeper terrain are more valuable. Conversely, house age has
a small negative effect (-0.4% per additional year, p<0.01), indicating a preference for newer properties. Irrespective of
precipitation, properties in excessive-fire-risk areas sell at about an 8-15% discount.

Turning to variables of primary interest, we find that higher precipitation levels, as proxied by various measures,
negatively affect property values in low-fire-risk areas. The Cumulative Rain Index (CRI345) coefficient indicates that a one
unit higher index, representing one standard deviation higher rainfall at a particular location, is associated with 1.9% lower
property values (p < 0.01) in low fire risk areas. However, the effect differs markedly in excessive-fire-risk areas, where
the same increase corresponds to only a 0.8% decrease in property values. Additional measures, including the Fractional
Deviation (FD), Shock Index (SI), and Rain Event Count (REC), provide further insights. A one-unit increase in FD is
associated with a 6% decline in property values (p < 0.01) in low-fire-risk areas. This negative impact is fully reversed in
excessive-fire-risk areas, where a mild positive effect of 0.6% is observed. Similarly, a one-unit increase in SI corresponds
to a 2.4% decline in property values (p < 0.05) in low-fire-risk areas, while excessive-fire-risk areas exhibit 1.8% higher

property values.
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Table 4: Hedonic Regression Results

Dependent Variable: Log(Sales Price)

CRls5 FD SI REC.qp REC.99 DEC.jy DEC.4

Index 0.019%*  -0.061***  -0.024**  -0.003*** -0.008***  0.000  -0.005***
(0.003)  (0.013)  (0.011)  (0.000)  (0.001)  (0.000)  (0.001)

Index x Fire Risk 0.011**  0.067**  0.042***  0.002**  0.010** -0.001**  0.000
(0.002)  (0.011)  (0.009)  (0.000)  (0.001)  (0.000)  (0.002)

Fire Risk 0.083*%*  -0.086"*  -0.084**  -0.148%* -0.124%*  -0.082**  -0.082**
(0.038)  (0.038)  (0.038)  (0.039)  (0.038)  (0.038)  (0.038)

House Age 0.004%*  -0.004**  -0.004%* -0.004*** -0.004*** -0.003**  -0.004***
(0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)

Living Area (1000 sq. ft.) ~ 0.252%%*  0252%* 02524 (2524  (252¢% (252  (.252%%
(0.006)  (0.006)  (0.006)  (0.006)  (0.006)  (0.006)  (0.006)

Bedrooms 0.030***  0.030%** 0.030**  0.030***  0.030***  0.030***  0.030***
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
SFR 0.202%*  0.201*** 0.202%¢  0.202**  0.201***  0.202***  (0.202***
(0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009)
Avg. Slope 0.005***  0.005%** 0.005**  0.005***  0.005***  0.005***  0.005***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Num. Obs. 268,406 268,406 268,406 268,406 268,406 268,406 268,406
R? 0.728 0.728 0.728 0.728 0.728 0.728 0.728
Adj. R? 0.716 0.716 0.716 0.716 0.716 0.716 0.716
Census FE Y Y Y Y Y Y Y
Year-month FE Y Y Y Y Y Y Y

Note: Significance levels: *** p<0.01, ** p<0.05, * p<0.1. Two-way clustered standard errors in parentheses. This ta-
ble presents hedonic regression results corresponding to Equation 8. CRlzg5 (Cumulative Rainfall Index, 365-day), FD
(Fractional Deviation), SI (Shock Index), REC (Rain Event Count), and DEC (Dry Event Count) are different measures of
precipitation patterns. Subscripts for REC and DEC indicate percentile thresholds, with both measures calculated based on
a 365-day lookback period. All models include twenty equal sized control bins for elevation and coastal proximity.

In low fire risk areas, each additional day of rainfall above the 90th percentile (RECgg) is associated with a 0.3% lower
property value (p<0.01), while a day above the 99th percentile (REC.g9) corresponds to a 0.8% lower value (p<0.01). In ex-
cessive fire risk areas, the coefficients are 0.1% and 0.2%, respectively. The Dry Event Count (DEC) measures show that dry
days must be very extreme to negatively impact property values. An additional day below the 10th percentile (DEC< 10)
has no impact on property values, but an additional day below the 1st percentile (DEC< 1) of rainfall is associated with a
0.5% decrease in property values (p < 0.01) in both excessive and low fire risk areas. Notably, the effect of dry conditions
does not show a significant interaction with fire risk, unlike the wet conditions captured by REC. This suggests that the
relationship between precipitation patterns and fire risk may not be reciprocal: increased wetness reduces fire risk, but
increased dryness does not proportionally increase it, at least as perceived by the housing market.

Our repeat sales model corroborates the hedonic model findings while addressing potential omitted variable bias
through its control of time-invariant property characteristics (Table 5). The coefficients for rainfall indices remain notably
consistent between both models. For instance, a one standard deviation increase in CRI corresponds to a 2.1% decrease in

property values (p<0.05) in low fire risk areas, closely matching the 1.9% effect observed in the hedonic model. Similarly,
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Table 5: Repeat Sales Regression Results

Dependent Variable: Log(Sales Price)

CRl3z45 FD SI RECs9g REC.g99 DEC.qp DEC.q
Index -0.021***  -0.057*** -0.019 -0.003***  -0.007*** 0.000 -0.005**
(0.003) (0.017) (0.012) (0.000) (0.002) (0.000) (0.002)
Index x Fire Risk 0.013**  0.078*** 0.052%*  0.002***  0.010***  -0.001** -0.004
(0.003) (0.014) (0.012) (0.000) (0.001) (0.000) (0.003)
Fire Risk x Year -0.005***  -0.004***  -0.005*** -0.005*** -0.004*** -0.005*** -0.005***
(0.002) (0.001) (0.002) (0.002) (0.001) (0.002) (0.002)
Num. Obs. 180,044 180,044 180,044 180,044 180,044 180,044 180,044
R? 0.880 0.881 0.880 0.881 0.881 0.880 0.880
Adj. R? 0.804 0.804 0.804 0.804 0.804 0.804 0.804
Property FE Y Y Y Y Y Y Y
Year-month FE Y Y Y Y Y Y Y
Census Time Trend Y Y Y Y Y Y Y

%3¢

Note: Significance levels: p<0.01, ** p<0.05, * p<0.1. Two-way clustered standard errors in parentheses. This table
presents repeat sales regression results corresponding to Equation 9. CRlzg5 (Cumulative Rainfall Index, 365-day), FD
(Fractional Deviation), SI (Shock Index), REC (Rain Event Count), and DEC (Dry Event Count) are different measures of
precipitation patterns. Subscripts for REC and DEC indicate percentile thresholds, with both measures calculated based on
a 365-day lookback period.

the fire risk-mitigating benefits of rainfall persist with properties in excessive-risk areas showing only a 0.8% deprecia-
tion following precipitation. Properties in fire risk areas face an annual price appreciation penalty of 0.5%, indicating an
accumulating long-term cost to being in these risk zones.

Collectively, our findings in the hedonic and repeat sales model indicate that while rainfall generally decreases prop-
erty values, this negative effect is substantially moderated in fire-prone areas. The divergence suggests that housing mar-

kets capitalize the protective function of rainfall against fire hazards in vulnerable areas.

8 Discussion and Conclusion

The relationship between precipitation and fire risk operates through multiple channels that may have countervailing ef-
fects on property values. Drought conditions enhance fire risk by increasing the availability of combustible fuel (Westerling
et al.,, 2006; Lima et al., 2018; Puxley et al., 2024). Conversely, periods of excessive precipitation can promote vegetation
growth that subsequently becomes potential fire fuel under dry conditions (Volkova et al., 2019; Herndndez Ayala et al.,
2021). However, wet conditions may also reduce fire risk through several mechanisms: maintaining higher soil moisture
that reduces ignition probability (Abatzoglou and Williams, 2016), limiting the accumulation of dry fine fuels (Van Blerk
et al., 2021), and altering vegetation moisture content. These mitigating effects have been documented across diverse
ecosystems, from tropical regions (Spracklen et al., 2012) to urban-wildland interfaces (Sakai et al., 2004).

Our results show that rainfall generally exerts a negative effect on property values, reflecting its nuisance and flood
potential. However, this effect is substantially moderated in fire-prone areas, suggesting that buyers interpret rainfall
as a signal of reduced ignition risk and incorporate these expectations into property valuations. The attenuation is robust
across rainfall metrics, regression specifications, and alternative definitions of fire exposure. Such market behavior parallels

documented responses to other natural hazards where risk perceptions drive price dynamics (Hallstrom and Smith, 2005;
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Bin and Landry, 2013).

The magnitude of these effects is economically significant. While a one unit higher cumulative rainfall index (which
is equivalent to a one standard deviation increase in precipitation) corresponds to 1.9% lower property values in low-fire-
risk areas, this negative effect shrinks to 0.8% in high-risk areas. This difference suggests that markets assign substantial
value to the role of precipitation in fire risk mitigation. Similarly, each additional day of extreme rainfall (above the 99th
percentile) is associated with 0.8% lower home values in low fire-risk areas but this effect reverses to 0.2% higher home
value in excessive-risk areas.

Three implications follow. First, there is value in further exploring whether real estate markets process compound cli-
mate risks correctly. While our results show that buyers respond to precipitation—fire risk linkages, these responses occur
amid evolving ecological and scientific understanding (Westerling et al., 2006; Abatzoglou and Williams, 2016). As precip-
itation patterns grow more volatile, improved public communication and disclosure could help align market perceptions
with physical realities.

Second, the heterogeneous impact of rainfall across fire-risk zones underscores the need for spatially differentiated
adaptation strategies. Although markets already adjust to varying levels of exposure, the increasing frequency of com-
pound climate events may warrant complementary policy interventions. Local governments could strengthen land-use
planning, building codes, and vegetation management in excessive-risk zones to enhance resilience alongside market-
based adjustments.

Third, our results inform ongoing debates about climate adaptation in spatially granular contexts. Hawai‘i’s diverse
microclimates and varying exposure to fire risk create valuable variation for studying climate-property value relationships.
The substantial price discounts we document in fire risk areas (8-15%) suggest a significant market valuation of fire risk,
with potential implications for public investment in risk mitigation infrastructure extending beyond Hawai‘i’s unique
context.

Several promising directions for future research emerge from our analysis. While we document how markets pro-
cess climate risks in Hawai‘i’s setting, investigating whether similar patterns exist in other regions would illuminate the
broader applicability of our findings. Studies could examine how variations in risk communication affect market pricing
of compound climate risks. Future work should also consider moral hazard implications. If rainfall makes excessive-risk
areas appear safer, it may inadvertently attract more development, complicating adaptation efforts. Unfortunately, such
analysis is currently precluded in Hawai‘i due to restrictive zoning and data constraints.

In conclusion, our findings reveal that markets actively price both precipitation and fire risks through measurable
effects on property values. The observed price patterns suggest that buyers weigh precipitation’s role in fire risk when
valuing properties, contributing to a growing literature on how real estate markets price compound climate risks. As
communities worldwide confront intersecting environmental hazards, understanding these market responses becomes

increasingly relevant for policy design.
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A Appendix

A.1 Repeat Sales Framework
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Figure A1: State Level Trend in Median Sales Price by Sample Type

Figure Al shows that median home prices in Hawai‘i have continued to appreciate since 2000, reaching a high in
2007, right around the time of the global financial crisis. They then depreciated until 2011 but have since been appreci-
ating steadily, reaching new highs near the end of our sample. Importantly, Figure Al also plots the median sales price
trend of the repeated sales sub-sample, which only includes properties that sold more than once. While repeat sales ad-
dress the issue of unobserved differences in housing characteristics, the method may be less precise than hedonic models
due to smaller sample sizes and potential selection bias issues (Gatzlaff and Haurin, 1997; OECD et al., 2013; Case and
Quigley, 1991). However, if the quality of homes is similar, arbitrage will force prices for the repeat sample to grow at
the same rate as the prices for the full sample (Clapp et al., 1991), which is what we observe in Figure Al. The trends of
the repeated sales and the full sample of sales are very closely related, with a correlation coefficient of 0.99. Conducting a
Kolmogorov-Smirnov (KS) test on the density of log sales price of the repeat sale and full sample, we fail to reject the null
hypothesis that there is no difference between the two distributions (D = 0.05, p = 0.69)°. Overall, the repeat sales sample
is representative of the broader real estate market.

To further probe the validity of the repeat sales approach, we restrict the sample to properties that transacted ex-
actly twice. If repeat sales bias is driven by transaction frequency, as suggested by Tyndall (2023), then this restriction
should yield estimates that better reflect underlying market trends. Next, we exclude properties with holding periods less

than four years to mitigate potential distortion from speculative behavior. Results for these are consistent with our main

5The K-S test compares the empirical distribution function of one sample to another sample. Comparing the two dis-
tribution functions generates a D value, which represents the maximum distance between two curves, as well as a corre-
sponding p-value.
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Table A1: Repeat Sales Regression Results for Properties Sold Exactly Twice

Dependent Variable: Log(Sales Price)

CRl3zg45 FD SI REC.g9p RECsg99 DEC.j9 DEC_q
Index -0.016***  -0.056*** -0.016  -0.002***  -0.006*** 0.000 -0.002
(0.005) (0.021) (0.015) (0.000) (0.002) (0.000) (0.002)
Index x Fire Risk 0.013**  0.069***  0.045***  0.002***  0.009*** -0.001 -0.007*
(0.004) (0.018) (0.015) (0.000) (0.002) (0.000) (0.004)
Fire Risk x Year -0.004** -0.003* -0.004**  -0.003** -0.003* -0.003**  -0.003**
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Num. Obs. 85,088 85,088 85,088 85,088 85,088 85,088 85,088
R? 0.906 0.906 0.906 0.906 0.906 0.906 0.906
Adj. R? 0.811 0.811 0.811 0.811 0.811 0.810 0.810
Property FE Y Y Y Y Y Y Y
Year-month FE Y Y Y Y Y Y Y
Census Time Trend Y Y Y Y Y Y Y

%3¢

Note: Significance levels: p<0.01, ** p<0.05, * p<0.1. Two-way clustered standard errors in parentheses. This table
presents repeat sales regression results corresponding to Equation 9 for properties that only transacted twice. CRlzgs
(Cumulative Rainfall Index, 365-day), FD (Fractional Deviation), SI (Shock Index), REC (Rain Event Count), and DEC (Dry
Event Count) are different measures of precipitation patterns. Subscripts for REC and DEC indicate percentile thresholds,
with both measures calculated based on a 365-day lookback period.

Table A2: Repeat Sales Regression Results Excluding Speculative Transactions

Dependent Variable: Log(Sales Price)

CRlIz45 FD SI RECs9g REC.99 DEC.qp DEC.q
Index -0.019***  -0.062** -0.020 -0.003***  -0.008*** 0.000 -0.006**
(0.005) (0.025) (0.017) (0.001) (0.002) (0.000) (0.003)
Index x Fire Risk 0.017**  0.071**  0.047***  0.002***  0.013*** -0.001 -0.005
(0.005) (0.020) (0.016) (0.001) (0.002) (0.001) (0.004)
Fire Risk x Year -0.004***  -0.004**  -0.004***  -0.004***  -0.004**  -0.004*** -0.004***
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Num. Obs. 58,983 58,983 58,983 58,983 58,983 58,983 58,983
R? 0.902 0.902 0.902 0.902 0.902 0.902 0.902
Adj. R2 0.813 0.813 0.813 0.813 0.814 0.813 0.813
Property FE Y Y Y Y Y Y Y
Year-month FE Y Y Y Y Y Y Y
Census Time Trend Y Y Y Y Y Y Y

Note: Significance levels: *** p<0.01, ** p<0.05, * p<0.1. Two-way clustered standard errors in parentheses. This table
presents repeat sales regression results corresponding to Equation 9, excluding properties with holding periods less than
four years. CRlzg5 (Cumulative Rainfall Index, 365-day), FD (Fractional Deviation), SI (Shock Index), REC (Rain Event
Count), and DEC (Dry Event Count) are different measures of precipitation patterns. Subscripts for REC and DEC indicate
percentile thresholds, with both measures calculated based on a 365-day lookback period.

narrative (Tables Al and A2).

A.2 Salience

Figure A2 shows that public search interest in the terms “Windward” and “Leeward” has remained persistently high over

time, comparable to that of “Condo,” suggesting that microclimatic distinctions are widely recognized and salient in the
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context of Hawai‘i’s real estate market. Figure A3 complements this evidence by presenting sample Zillow listings in
which sellers explicitly reference “Windward” or “Leeward” in property descriptions, indicating that these climatic terms
are actively used to market homes. The consistent presence of such language in both search behavior and listings suggests

that buyers are aware of, and respond to, Hawai‘i’s localized climatic variation.

Search Terms
- Condo Leeward - Windward

Search Interest
o
g
—

Figure A2: Google Trend Search Interest: Condo, Windward, Leeward

Note: This figure shows Google Trends search interest for three Hawai‘i -related terms over time: Condo, Windward, and
Leeward. Numbers represent search interest relative to the highest point on the chart for the given region and time. A
value of 100 is the peak popularity for the term. A value of 50 means that the term is half as popular. A score of 0 indicates
that there was insulfficient data for this term.

A.3 Within Census Tract Variation and Spatial Correlation

To assess the plausibility of our identification strategy, we plot transaction-level cumulative rainfall exposure (CRI345)
within the census tract with the most sales for some selected years. We observe meaningful within-tract heterogeneity in
precipitation exposure. These maps demonstrate that buyers within the same tract may face materially different climatic
conditions, supporting our use of census tract-level fixed effects.

While our identification leverages within census tract variation, spatial correlation in rainfall, particularly among
nearby properties, may be of concern (see Figure A4). To address this, we report standard errors corrected for spatial
dependence using the Conley (1999) estimator. Similar to clustered standard errors which consider observations to not
be independent of each other within groups, Conley standard errors allow for arbitrary correlation in the error structure
among observations in close geographic proximity. We report results using a 2 km Haversine distance spatial cutoff. Our

key findings remain robust to this correction and alternative cutoff definitions (up to 20 km).
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What's special

Experience unparalleled stunning views of Kaneohe Bay & the Ko'olau mountains as you enter into this gated
Hilltop Sanctuary! This 5 bedroom, 5/2 bathroom custom home sits atop the unique Windward neighborhood
of Mahinui on Oahu— a hidden gem low-traffic area, just minutes from Kailua town & its beaches — boasting
dynamic panoramic views of vibrant Kaneohe Bay, Kaneohe Yacht Club, Chinaman’s Hat, and iconic Coconut
Island.

Savor the ambience created by high ceilings, expansive rooms with large view windows, & an abundance of
natural light.

Solidly built with all steel beam construction, hardwood flooring, travertine, imperial plaster walls, split AC;
designed for everyday living and entertaining with two primary suites, large game room and bonus room, 3
entrances & separate living areas for extended family, friends or rental. Outdoor lounge and sundeck plus
private back yard beckon you to relax or unwind & savor the fresh air of hilltop ocean breezes.

Proximity to H-3 on ramps allows you to live on the desirable lush Windward side, while still providing easy
access to Honolulu and the airport.

What's special

Windward Wanderers wanted! Imagine moving to greener pastures with world famous Hoomaluhia Botanical
Gardens nearby, hiking trails, shopping, restaurants, military base, Kaneohe Bay and more. Side by side
washer dryer and cozy kitchen, make this home a must in your portfolio or even as your home. Pet friendly
policies seem to attract the furriest of tenants, make sure to check the house rules. Take advantage of your
Hawai'i Life by enjoying the natural beauty Oahu and the Windward side have to offer. Make it your own. Call
today for a showing.

What's special

Makaha Surfside is a charming oceanfront community on Oahu's Leeward Coast, minutes from stunning
beaches and scenic hiking trails. This move-in ready unit is a great opportunity for first-time homebuyers,
investors, or if you're looking for a weekend retreat. Enjoy modern coastal living with a well-equipped kitchen
featuring stainless steel appliances, an abundance of cabinet space plus the convenience of an in-unit washer
and dryer. Resort-style amenities include two pools, beach access, surfboard storage, an exercise room,
sauna, barbecue area and a 24-hr gated security. There is one assigned parking and also ample guest parking
available. Don't miss your chance to own a piece of paradise - schedule a showing today!

What's special

OCEAN VIEW  CORNERUNIT  VIBRANT TROPICAL PLANTS PALM TREES  BRIGHT OPEN KITCHEN

OPEN-CONCEPT LIVING TRANQUIL MOUNTAIN VIEWS

Discover island living at Makaha Valley Plantation in this charming 2-bedroom, 1-bath corner unit nestled in
the serene Leeward Coast. Tucked away in a peaceful we corner of the gated Makaha Valley Plantation
community, this charming 2-bedroom, 1-bathroom condo has been recently updated with stylish vinyl floorin.
Enjoy a bright open kitchen with a slight ocean view. This second-floor condo offers comfortable living space
and tranquil mountain views. The gated community features resort-style amenities including a pool, sauna,
and tennis courts—perfect for relaxation and recreation. Enjoy open-concept living and an open porch ideal
for morning coffee or evening breezes. This unit represents strong value and ownership potential in one of
Oahu’s most scenic valleys. Ideal for first-time buyers, investors, or anyone seeking a peaceful Hawaii lifestyle.
Includes two swimming pools, super convenient laundry facilities, plenty of guest parking, BBQ areas and
courts for tennis and basketball. Vibrant tropical plants, lots of palm trees, and beautifully manicured lawns,
all set against the stunning backdrop of the Waianae Mountain Range.

Figure A3: Sample Real Estate Listings

Note: This figure presents sample property listings from Zillow that explicitly reference Windward or Leeward in their
descriptions, highlighting the salience of microclimatic terminology in Hawai‘i’s real estate market.
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Figure A4: Within Census Tract Variation in CRI

Kawaihae - Anaeho'omalu (2005)

Hoakalei Country Club (2010)

i 21.325°N
Honokowai (2000) 005
20.96°N
2095°N .
21.320°N
. CRI 000N CRI CRI
— 01
) jN 14 08
3 0.2
209N . !i. 16 07 21.315°N
» 19.95°N 03
osen [0 18 06
Qx PPN 20 05 04
2091°N T { 04 21310°N 05
~_\
20.90°N r“\\\
21.305°N ~
156.70°W  156.68°W  156.66°W  156.64°W  156.62°W  156.60°W _—
19.85°N —
158.045°W 158.040°W 158.085°W 156.030°W 158.025°W 156.020°W
155.90°W  15585'W  15580W  15575°W
Hoakalei Country Club (2015)
21.325°N Honokowai (2019)
2096'N
20.95°N
21.320°N
CRI . CRI
00 0.00
21.315°N 01 20.93°N 025
02
20.92°! -0.50
03 20.92°N
04 075

21.310'N 209N

20.90°N

21.305°N

156.70°W  156.68°W  156.66°W  156.64°W  156.62°W  156.60°W

158.045°W 158.040°W 158.035°W 158.080°W 158.025°W 158.020°W

Note: This figure shows cumulative rainfall exposure (CRI3g5) for transactions within the tract with the most sales across
different years. We observe substantial within-tract variation in CRI.
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Table A3: Hedonic Regression Results with Conley Standard Errors

Dependent Variable: Log(Sales Price)

CRls5 FD SI REC.qp REC.99 DEC.jy DEC.4

Index 20.019%*  -0.061***  -0.024  -0.003*** -0.008***  0.000  -0.005*
0.004)  (0.023)  (0.018)  (0.000)  (0.002)  (0.000)  (0.003)

Index x Fire Risk 0.011*  0.067**  0.042*  0.002** 0.010**  -0.001*  0.000
(0.005)  (0.026)  (0.022)  (0.001)  (0.003)  (0.000)  (0.004)

Fire Risk 0.083*  -0.086*  -0.084*  -0.148** -0.124**  -0.061  -0.082*
0.047)  (0.047)  (0.047)  (0.051)  (0.048)  (0.051)  (0.047)

House Age 0.004%*  -0.004**  -0.004%* -0.004*** -0.004*** -0.004**  -0.004***
(0.001)  (0.001)  (0.001)  (0.001)  (0.001)  (0.001)  (0.001)

Living Area (1000 sq. ft.) ~ 0.252%%*  0252%* 02524 (2524  (252¢% (252  (.252%%
(0.010)  (0.010)  (0.010)  (0.010)  (0.010)  (0.010)  (0.010)

Bedrooms 0.030***  0.030***  0.030***  0.030***  0.030***  0.030***  0.030***
(0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009)
SFR 0.202***  0.201***  0.202***  0.202***  0.201***  0.202**  (0.202***
(0.015) (0.015) (0.015) (0.015) (0.015) (0.015) (0.015)
Avg. Slope 0.005***  0.005***  0.005***  0.005***  0.005***  0.005***  0.005***
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Num. Obs. 268,406 268,406 268,406 268,406 268,406 268,406 268,406
R2 0.728 0.728 0.728 0.728 0.728 0.728 0.728
Adj. R? 0.716 0.716 0.716 0.716 0.716 0.716 0.716
Census FE Y Y Y Y Y Y Y
Year-month FE Y Y Y Y Y Y Y
Conley SE 2km 2km 2km 2km 2km 2km 2km

Note: Significance levels: *** p<0.01, ** p<0.05, * p<0.1. This table presents hedonic regression results corresponding to
Equation 8. CRI3¢5 (Cumulative Rainfall Index, 365-day), FD (Fractional Deviation), SI (Shock Index), REC (Rain Event
Count), and DEC (Dry Event Count) are different measures of precipitation patterns. Subscripts for REC and DEC indicate
percentile thresholds, with both measures calculated based on a 365-day lookback period. All models include twenty equal
sized control bins for elevation and coastal proximity. We use Conley standard errors to recognize potential dependence of
observations based on spatial proximity (2km cutoff).

A.4 Dynamic Fire Risk

Our fire risk designation is based on wildfire risk zones established in the mid-2000s, with boundaries remaining constant
from data collection in 2006-2007 to the end of our sample period in 2019. While research shows that home buyers respond
to such risk designations (Donovan et al., 2007), Figure A5 reveals that actual wildfire occurrences do not perfectly align
with these established risk zones. Another concern is that wildfire risk tends to be capitalized into housing prices only
in the aftermath of salient events, such as nearby fires, and these effects typically dissipate within a few years (Bin and
Landry, 2013; McCoy and Walsh, 2018). To validate our findings, we construct a time-varying fire exposure index based on
actual wildfire occurrences within three years of each transaction.

We obtain the wildfire occurrence data from the Pacific Fire Exchange website. The dataset primarily focuses on fires
equal to or larger than 20 hectares (50 acres) and integrates multiple data sources including ground-based GPS-mapped fire

perimeters from the Hawai’i Wildfire Management Organization, National Park Service records from Hawai‘i Volcanoes
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Figure A5: Actual Fire Occurrences and Fire Risk Areas

National Park, US Geological Survey’s Monitoring Trends in Burn Severity satellite data (2002-2011), and the Army Natural
Resource Program-Oahu. Additional fires were mapped by the University of Hawai'i’s Department of Natural Resources
and Environmental Management using LANDSAT and Sentinel-2 satellite imagery. The state had a total of 310 wildfires
between 2000-2019, with an average size of 796 acres.

Existing literature typically employs either the size and proximity of the nearest fire (Holmes et al., 2008; Stetler et al.,
2010) or considers the number and average size of fires within a set distance from properties (Hansen and Naughton, 2013;
Xu and Van Kooten, 2013), finding significant impacts on property values. However, using these attributes individually

can overlook the non-linear relationships between fire exposure and property values, potentially missing relevant fire char-
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acteristics. To circumvent these issues, we construct a transaction-specific index following Shi et al. (2022). This measure
integrates all major aspects of wildfire exposure; fire sizes, distances to fires, and the number of fires. Specifically, for each
property transaction i at time f, we calculate:

: (4
sizef,

FireIndex;; = Z
k

s 1
exp(distancey;) (10)

where sizey; represents the size of fire k in acres, distancey,; indicates the proximity in km from the property to the
centroid of fire k, and « is a diminishing parameter. This measure allows for nonlinear impacts of fire size while accounting
for spatial decay in the fire’s influence through the exponential distance term, and is also similar to indices used in other
papers assessing the impact of environmental hazards on property values (see, for example, McCluskey and Rausser, 2001;
Ready and Abdalla, 2005; Gopalakrishnan and Klaiber, 2014).

Following Shi et al. (2022), we use wildfires occurring between three years and 60 days before the sale date to construct
the fire index. The lower limit of 60 days is selected because the decision to purchase a property is often made around two
months before the official recording date, as commonly noted in hedonic studies (Loomis, 2004; Mueller et al., 2009). The
upper limit of three years is informed by literature indicating that initial high price discounts due to wildfire risk tend to
diminish over a 2-3-year period (McCoy and Walsh, 2018). We further restrict our analysis to wildfires within 10 km of the
property.® Prior studies indicate that wildfires beyond 20 km generally do not significantly affect property values (Stetler,
2008; Stetler et al., 2010), which has led to 20 km being a standard search radius in previous research (Shi et al., 2022).
However, we adopt a 10 km radius, as the geographic area in our study is generally smaller than those examined in these
earlier works.

We employ the conventional grid search method, which exhaustively searches through a manually specified subset
of possible values for & (Dufour and Neves, 2019; Shi et al., 2022). Specifically, for each candidate value of a between
[—2,2] in increments of 0.1, we calculate the fire index and estimate our hedonic model separately, selecting the value
that minimizes the sum of squared residuals (SSR). To quantify uncertainty around our optimal estimate, we perform 100
bootstrap replications, randomly resampling our data with replacement, and re-running the entire grid search procedure
for each sample to calculate standard errors and confidence intervals for a. Our estimated optimal « of 0.2 falls well
within the uncertainty interval derived from this bootstrap procedure and remains consistent across all hedonic model
specifications with different rainfall measures. Previous studies suggest that « should be relatively small, likely within the
range of 0 to 1, indicating a diminishing marginal impact of fire size on property values (Xu and Van Kooten, 2013; Shi
et al., 2022). In this context, our estimate of « = 0.2 aligns well with existing literature and represents a statistically reliable
estimate of the diminishing marginal impact of fire size on property values.

Table A4 presents summary statistics for the newly added fire-related variables, using the same sample as the pre-
viously analyzed dataset. Overall, 43% of transactions in the sample had some level of wildfire exposure. The mean fire
index value of 0.41 and median of 0 suggest that most of these properties had low fire exposure. The maximum fire index
value of 18 highlights that certain properties were situated in significantly high-risk zones.

Pearson correlations among key variables assess the extent of dependence between our fire risk and precipitation

measures (Figure A6). The fire risk zone indicator correlates positively with our dynamic fire exposure index, suggesting

6We calculate distances from the center of each property to the centroid of each fire polygon, reflecting the assumption
that a fire’s impact emanates from its center.
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Table A4: Summary Statistics for Fire Index Sample (2000-2019)

Mean Median Sd Min. Max.
Fire Index 0.41 0 1.1 0 18
Fire Index > 0 0.43 0 0.5 0 1

Note: Descriptive statistics for the fire index sample for the four islands of Maui, Kaua’i , Honolulu, and
Hawai‘i . The variable "Fire Index > 0" is a dummy, equal to 1 if the fire index for a transaction is positive. N
= 268,406.

consistency between designated risk areas and actual fire patterns. Precipitation measures exhibit expected correlations
with each other but show minimal correlation with either fire risk measure, supporting the identification of interaction

effects in our main analysis.
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Figure A6: Correlation Matrix

Note: Lookback period is 365 days where applicable.

We now estimate our main hedonic specification using the time-varying fire index measure as opposed to the fire risk
designation. Table A5 reinforces our core findings while providing additional robustness. The results continue to demon-

strate the dual negative effects of both rainfall and wildfire risk on property values. More importantly, they substantiate
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our primary hypothesis regarding rainfall’s moderating effect on wildfire risk. Specifically, in areas considered safe from
fires, a one unit higher CRI, representing one standard deviation higher rainfall at a particular location, corresponds to
1.5% lower property values. However, for properties in fire-prone areas that experienced rainfall, this negative effect is
reduced to approximately 1%. This pattern, observed across both static and dynamic measures of fire risk, provides robust
evidence for our central finding: rainfall significantly mitigates the negative impact of being in a fire-prone area. We also

find some support (p < 0.1) that each additional dry day further reduces property values in areas at risk of wildfire.

Table A5: Hedonic Regression Results with Fire Index

Dependent Variable: Log(Sales Price)

CRlsg5 FD SI REC.qp REC.99 DEC.j;y DEC.4

Index 0.015%*  -0.019%*  -0.001  -0.002***  -0.003*  -0.001*** -0.006***
(0.003)  (0.011)  (0.009)  (0.000)  (0.001)  (0.000)  (0.001)

Fire Index 0.011%*  -0.011%*  -0.011%* -0.034** -0.021** -0.022%* -0.011***
(0.003)  (0.003)  (0.003)  (0.005)  (0.004)  (0.004)  (0.003)

Index x Fire Index 0.006%*  0.018%*  0.013***  0.001**  0.003*** -0.001***  -0.003*
(0.001)  (0.004)  (0.003)  (0.000)  (0.001)  (0.000)  (0.002)

House Age 0.004%*  -0.004**  -0.004%* -0.004*** -0.004*** -0.004**  -0.004***
(0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)

Living Area (1000 sq. ft.) ~ 0.252%*  0252%* 02524 (2524 (2524 (252  (.252%%
(0.006)  (0.006)  (0.006)  (0.006)  (0.006)  (0.006)  (0.006)

Bedrooms 0.030***  0.030%** 0.030**  0.030***  0.030***  0.030***  0.030***
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
SFR 0.202%*  0.202%** 0.202%%  0.202**  0.202***  (0.202***  (0.202***
(0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009)
Avg. Slope 0.005***  0.005%** 0.005**  0.005***  0.005***  0.005***  0.005***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Num. Obs. 268,406 268,406 268,406 268,406 268,406 268,406 268,406
R? 0.728 0.728 0.728 0.728 0.728 0.728 0.728
Adj. R? 0.716 0.716 0.716 0.716 0.716 0.716 0.716
Census FE Y Y Y Y Y Y Y
Year-month FE Y Y Y Y Y Y Y

Note: Significance levels: *** p<0.01, ** p<0.05, * p<0.1. Two-way clustered standard errors in parentheses. This table
presents hedonic regression results corresponding to Equation 8 but using the dynamic fire risk measure. CRI345 (Cumu-
lative Rainfall Index, 365-day), FD (Fractional Deviation), SI (Shock Index), REC (Rain Event Count), and DEC (Dry Event
Count) are different measures of precipitation patterns. Subscripts for REC and DEC indicate percentile thresholds, with
both measures calculated based on a 365-day lookback period. All models include twenty equal sized control bins for
elevation and coastal proximity.

A.5 Precipitation Measures

We show that our results are not sensitive to the choice of lookback period before the property transaction. We consider the
alternative construction of the cumulative rainfall index with lookbacks of 90 and 180 days respectively. We also consider
the impact of Rain and Dry Event counts based on various percentile thresholds. Table A6, A7, and A8 report these results.

The Cumulative Rain Index (CRI) captures broad precipitation patterns over 90, 180, and 365 day lookbacks, compar-

ing them to either fixed historical (1990-1999) or dynamic (prior decade) baselines. Table A9 reports fixed baseline results.
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Table A6: Hedonic Regression Results with Different Lookbacks for CRI

Dependent Variable: Log(Sales Price)

Lookback Days 180 90 180 90
CRI -0.015***  -0.010***  -0.010***  -0.007**
(0.004) (0.004) (0.003) (0.003)
Fire Risk -0.084**  -0.083**
(0.038) (0.038)
CRI x Fire Risk 0.010***  0.007***
(0.002) (0.003)
Fire Index -0.011***  -0.011***
(0.003) (0.003)
CRI x Fire Index 0.005***  0.003***
(0.001) (0.001)
House Age -0.004***  -0.004***  -0.004***  -0.004***
(0.000) (0.000) (0.000) (0.000)
Living Area (1000 sq. ft.) 0.252%*  (0.252%** 0.252%*  (0.252%**
(0.006) (0.006) (0.006) (0.006)
Bedrooms 0.030***  0.030%** 0.030%**  0.030%**
(0.003) (0.003) (0.003) (0.003)
SFR 0.201%*  0.201*** 0.200%**  0.200%**
(0.009) (0.009) (0.009) (0.009)
Avg. Slope 0.005***  0.005%** 0.005%**  0.005%**
(0.001) (0.001) (0.001) (0.001)
Num. Obs. 268,406 268,406 268,406 268,406
R? 0.728 0.728 0.728 0.728
Adj. R? 0.716 0.716 0.716 0.716
Census FE Y Y Y Y
Year-month FE Y Y Y Y

Note: Significance levels: *** p<0.01, ** p<0.05, * p<0.1. Two-way clustered standard errors are in parentheses. This
table presents hedonic regression results corresponding to Equation 8 using different lookback periods for the Cumulative
Rainfall Index. It incorporates both static and dynamic fire risk measures.

Both CRI and Fire Risk coefficients maintain similar magnitudes and statistical significance across specifications.” How-

ever, the positive interaction between rainfall index and fire risk, is only significant in one of three models under fixed

baseline. Overall, the similarities between rolling and fixed baseline patterns are not distinct enough to suggest that buyers

perceive recent rainfall as less impactful in the longer run having had more time to adjust to the climate norm.

7Under the fixed baseline specification, the CRI coefficients were consistently negative: -1.9% (365-day), -1.5% (180-
day), and -1.0% (90-day), with all coefficients significant at 1% level. In dynamic baseline, these are -1.7%, -1.1%, and -0.7%,
respectively, significant at either 1% or 5% level. In both cases, Fire Risk coefficient is approximately -0.8%, significant at

5% level (see Tables 4 & A6).
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Table A7: Hedonic Regression Results with Different Lookbacks for REC

Dependent Variable: Log(Sales Price)

365 Days 180 Days 90 Days
REC. g5 REC.g9 REC.g5 REC<gg REC< g9 REC. g5 REC~ ¢
Index -0.005***  -0.006***  -0.004***  -0.003*** -0.002 -0.004***  -0.003***
(0.001) (0.002) (0.001) (0.000) (0.002) (0.001) (0.001)
Index x Fire Risk 0.003*** 0.010%** 0.003*** 0.002*** 0.009%** 0.003%** 0.002%**
(0.000) (0.001) (0.001) (0.000) (0.002) (0.001) (0.001)
Fire Risk -0.147***  -0.106***  -0.113***  -0.112***  -0.093** -0.098**  -0.099***
(0.039) (0.038) (0.038) (0.038) (0.038) (0.038) (0.038)
House Age -0.004***  -0.004***  -0.004***  -0.004***  -0.004***  -0.004***  -0.004***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Living Area (1000 sq. ft.) 0.252*%* 0.252*** 0.252*%* 0.252*%* 0.252%%* 0.252%** 0.252%**
(0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006)
Bedrooms 0.030%** 0.030*** 0.030%** 0.030%** 0.030%** 0.030%** 0.030%**
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
SFR 0.202%** 0.201*** 0.201*** 0.202%** 0.201%** 0.201*** 0.202***
(0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009)
Avg. Slope 0.005*** 0.005*** 0.005*** 0.005%** 0.005%** 0.005%** 0.005%**
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Num. Obs. 268,406 268,406 268,406 268,406 268,406 268,406 268,406
R? 0.729 0.728 0.728 0.728 0.728 0.728 0.728
Adj. R? 0.716 0.716 0.716 0.716 0.716 0.716 0.716
Census FE Y Y Y Y Y Y Y
Year-month FE Y Y Y Y Y Y Y

Note: Significance levels: *** p<0.01, ** p<0.05, * p<0.1. Two-way clustered standard errors in parentheses. This table
presents hedonic regression results corresponding to Equation 8. REC (Rain Event Count) variables are partitioned by

lookback periods (365, 180, 90 days) and percentile thresholds (99, 95, 90).
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Table A8: Hedonic Regression Results with Different Lookbacks for DEC

Dependent Variable: Log(Sales Price)

365 Days 180 Days 90 Days

DEC.s DEC.;, DEC.5s DEC.; DEC.;y DEC.5s DEC

Index -0.001* 0.000 0000  -0.004**  0.001 0.000  -0.006**
(0.000)  (0.000)  (0.001)  (0.002)  (0.001)  (0.001)  (0.002)

Index x Fire Risk 0.000 0.001*  -0.001 0.001 0.000 0.000 0.004
0.000)  (0.000)  (0.001)  (0.003)  (0.001)  (0.001)  (0.003)

Fire Risk -0.080*  -0.073**  -0.078**  -0.083**  -0.081**  -0.083**  -0.083*
(0.039)  (0.038)  (0.038)  (0.038)  (0.039)  (0.038)  (0.038)

House Age 200045 -0.004**  -0.004%*  -0.004%*  -0.004**  -0.004**  -0.004**
(0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)

Living Area (1000 sq. ft.)  0.252%*  0.252%%%  0252%%  (252%%  (252%*  (252%*  (.252%+
0.006)  (0.006)  (0.006)  (0.006)  (0.006)  (0.006)  (0.006)

Bedrooms 0.030%** 0.030*** 0.030%** 0.030%** 0.030%** 0.030%** 0.030%**
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
SFR 0.202%** 0.202%** 0.202%** 0.202%** 0.202*** 0.202*** 0.202***
(0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009)
Avg. Slope 0.005*** 0.005*** 0.005*** 0.005%** 0.005%** 0.005%** 0.005%**
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Num. Obs. 268,406 268,406 268,406 268,406 268,406 268,406 268,406
R? 0.728 0.728 0.728 0.728 0.728 0.728 0.728
Adj. R? 0.716 0.716 0.716 0.716 0.716 0.716 0.716
Census FE Y Y Y Y Y Y Y
Year-month FE Y Y Y Y Y Y Y

Note: Significance levels: *** p<0.01, ** p<0.05, * p<0.1. Two-way clustered standard errors in parentheses. This table
presents hedonic regression results corresponding to Equation 8. DEC (Dry Event Count) variables are partitioned by
lookback periods (365, 180, 90 days) and percentile thresholds (10, 5, 1).

38



Table A9: Hedonic Regression Results with Different Lookbacks for CRI (1990-1999 base)

Dependent Variable: Log(Sales Price)

Lookback Days 365 180 90
CRI -0.017%** -0.011%** -0.007**
(0.003) (0.004) (0.004)
Fire Risk -0.080** -0.082** -0.082**
(0.038) (0.038) (0.038)
CRI x Fire Risk 0.006%* 0.004 0.002
(0.003) (0.003) (0.003)
House Age -0.004*** -0.004*** -0.004***
(0.000) (0.000) (0.000)
Living Area (1000 sq. ft.) 0.252%** 0.252** 0.252%**
(0.006) (0.006) (0.006)
Bedrooms 0.030%** 0.030%** 0.030%**
(0.003) (0.003) (0.003)
SFR 0.201*** 0.201*** 0.201***
(0.009) (0.009) (0.009)
Avg. Slope 0.005%** 0.005*** 0.005%**
(0.001) (0.001) (0.001)
Num. Obs. 268,406 268,406 268,406
R? 0.728 0.728 0.728
Adj. R? 0.716 0.716 0.716
Census FE Y Y Y
Year-month FE Y Y Y

Note: Significance levels: *** p<0.01, ** p<0.05, * p<0.1. Two-way clustered standard errors are presented in parentheses.
This table presents hedonic regression results corresponding to Equation 8 using different lookback periods (365, 180, and
90 days) for the Cumulative Rainfall Index, where each period’s rainfall is compared to the same calendar days in the fixed
base period of 1990-1999.

39



	Introduction
	Literature Review
	Data
	Parcel Data
	Static Fire Risk
	Dynamic Fire Risk
	Summary Statistics

	Precipitation Measures
	Cumulative Rain Index (CRI)
	Fractional Deviation (FD)
	Shock Index (SI)
	Rain Event Count (REC) and Dry Event Count (DEC)
	Precipitation Summary Statistics

	Saliency
	Methods
	Results
	Discussion and Conclusion
	Appendix
	Repeat Sales Framework
	Salience
	Within Census Tract Variation and Spatial Correlation
	Dynamic Fire Risk
	Precipitation Measures


